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Four-dimensional space-time, all relevant inner products, and some of the groups 
leaving these inner products invariant are manufactured from more basic alge- 
braic ingredients, all inside the 8-dimensional Pauli algebra ~: (1) Euclidean 
3-space E 3, (2) Minkowski 4-space m 4, (3) complex 4-space C 4, and all three 
metrics and all three inner products. The groups S 0 ( 3 ; ~ ) c S 0 ( 3 ,  1;R)c 
SO(4; C) are obtained as images of twofold covering maps of subgroups of 
or their direct product. A method of embedding ~ in the Clifford algebra 
~(1; n -  1) of n-dimensional Minkowski space is given for any n->4. Further- 
more, all three groups act not only on the relevant vector spaces, but on all of 
~(1; n -  1), leaving ~ setwise invariant. 

1. I N T R O D U C T I O N  

Algebra ica l ly ,  the  Paul i  and  Di rac  a lgebras  ~ c ~ are s imple  because  
they  are i s o m o r p h i c  to 2 • 2 mat r ix  rings ~ - M2(C) and  @ -~ M2(HR) over  
the complexes  C and  the real  qua te rn ion  divis ion r ing HR. It  is well  known  
that  M2(C) conta ins  H~ and  a twofo ld  cover  o f  SO(3, 1; R). Wha t  is impor -  
tant  is not  that  each o f  the inner  p roduc t s  and  groups  can s o m e h o w  be 
found  ins ide  M2(C) separa te ly ,  but  that  (1) they  can all be found  there  at 
once,  by  (2) choos ing  an unusua l  e m b e d d i n g  o f  Minkowsk i  space  M 4 in 
~ ;  and  (3) the c o m p u t a t i o n a l l y  s imple  and  di rec t  fo rmulas  for  the g roup  
act ions  SO(3;  ~ ) c  SO(3,  1; ~ ) c  SO(4; C) in the smal ler  Pauli  a lgebra  ~ ,  
as o p p o s e d  to the la rger  Di rac  algebra.  The sys temat ic  me thod  using 
involu t ions  to cons t ruc t  bo th  metr ics  and  the groups  leaving them invar iant  
used  here in a Clifford a lgebra  context  is be l ieved  to be new. Cons t ruc t ions  
s imi lar  to the one here can  be car r ied  out  in p r inc ip le  in any Clifford a lgebra ,  
as is expl ic i t ly  shown in Sect ion 5, whereas  s t raight  M2(C), C2-spinor ,  or 
qua te rn ion ic  cons t ruc t ions  s top  at d imens ion  8. See Di rac  (1945), E d m o n d s  
(1974), G a m b a  (1967), and  Rastal l  (1964). 
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The canonical embedding of Euclidean space (R3, + + + ) into ~, i.e., 
(x, y, z ) ~  xo-~ +ycr2+ z~r3, singles out a distinguished embedding of R 4 into 
~ ;  namely (t, x, y, z ) ~  t.  1 +xo-~ +y~2+ zo- 3. However, this latter embed- 
ding does not work for the above program. A similar phenomenon has 
already been encountered in a related construction of Euclidean space 
angles and directions from particles with spin 1/2 (Penrose, 1971, p. 162). 

Here the point of view will be taken that even a single point in 
space-time, and particularly the metric, is not an a priori given, but rather 
must be built out of even more basic and primitive objects. Support for this 
viewpoint can be found in Marlow (1984) and Penrose (1971); in both the 
dominating idea is that quantum theory and the construction of space-time 
depend on each other. Here the primitive irreducible building blocks are 
to be of two kinds: elements of a Clifford algebra, and the purely algebraic 
operations on it ( + , . ,  and the involutions - and *). To repeat the obvious, 
for example, to write down the equation g = - t 2 + x 2 + y 2 + z  2 in no way 
constructs the Lorentz metric from more basic ingredients; the coordinate- 
dependent numbers t, x, y, z are not even elements of Clifford algebras. 
Clifford algebras have been used before for this (e.g., Hestenes, 1961, 1984; 
Keller, 1984, 1985). However, with the exception of Finkelstein (1982), the 
idea that the basic algebraic operations themselves, and in particular the 
involutions, are the really fundamental entities has not been recognized or 
exploited. 

2. C L I F F O R D  A L G E B R A  B A S I C S  

2.1. Let V be a vector space over the reals R of finite dimension 
dims V = n, a n d  g = g ( . , .  ): V x V--> R a symmetric, bilinear, and nonsin- 
gular (Hestenes, 1984, p. 97) function, i.e., an inner product. Let O(V, g) 
be the group of all linear isomorphisms T: V--> V such that g(Tv, Tw)= 
g(v, w) for all v, w ~ V; and SO(V, g) < O( V, g) be the subgroup of index 
2 of all those T with determinant det T = +1. 

2.2. Definition and Theorem. There exists a real algebra c~ = ~( V, g) 
called the Clifford algebra of ( V, g) such that: 

(0) • ~ R �9 1 c c~, 1 = identity element of ~. 
(i) V c  ~ canonically; every element of ~ is a sum of products of 

vectors of V. 
(ii) For any v, w e  V, vw+ wv=g(v ,  w) �9 1~ ~, (vw, wv are ring prod- 

ucts inside ~). 
(iii) Uniqueness: ~(V, g) is uniquely determined by (0), (i) and (ii) 

up to an automorphism, which is the identity on V. 

2.3. Intrinsic Involutions. For any algebra, such as c~= c~(V, g), an 
R-linear isomorphism of order two, which either preserves or reverses 
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multiplication is called an involution. Multiplication by - 1  on V only extends 
to an involution *: ~ +  cg by (vlv2" �9 �9 v~)* = ( - v O ( - v 2 )  �9 �9 �9 (--Vr) for v~ 6 V; 
( a  - /3 )*  = a * - / 3 * ,  (a/3)* = ol*fl*, a** = ~ for a,/3 ~ ~. 

There exists a Unique multiplication-reversing involution which is the 
identity on V, obtained by writing the individual vectors in reverse order 
( v l v 2 " ' "  Vr) c =  (V~V,.-I'" "V2VO. [For uniqueness, see Lam (1973, p. 107).] 

Their composite or product  defines a multiplication-reversing invol- 
ution ": ~-~ cg by o~ = (~xc)* = (ce*) c. Note that (a*)"  = o~*, and a c = f f ~  *. 

Hence, any two of*,  C, or"  are only needed. The main unique multiplication- 
reversing involution on a Clifford algebra such as 3 ~, @, or ~ will be denoted 
by superscripts P, D, and C, respectively. 

2.4. The point of  this paper  is that three facts make Clifford algebras 
useful in physics. (1) The same uniform mathematical mechanism and 
theory is available for any ( V, g), for any n = dime V, and any g. (2) Every 
element T c  O(V,g)  is given by an inner automorphism by an element 
u ~ ~(V, g), that is, T ( v )  = u - l v u ,  all v c V. Furthermore, u is unique up to 
a nonzero real scalar multiple; and T ~  S O ( V ,  g)  if and only if u is in the 
even Clifford subalgebra u ~ cg+( V, g) = cg+ where cg+( V, g) = cg+ is gener- 
ated by { v w I v ,  w ~ V}.  (3) Every Clifford algebra ~(V, g) carries the two 
natural involutions * and ". [For 2.1-2.4, see Cassels (1978, p. 19; p. 172, 
Theorem 2.1; p. 176, Theorem 3.1; and p. 177, Corollary 1).] 

3. EMBEDDING ( ~ 4 ,  __ ..]_ ..~ .]. ) IN PAULI ALGEBRA 

The Clifford algebra of  negative-definite Euclidean space is 
~(R 3, - - - )  ~ H~O Ha; while that of  our usual positive-definite Euclidean 
space E 3 = (R 3, + + + )  is the familiar and physically significant Pauli algebra, 
i.e., C~(E3) ~ ~. In view of the latter, Minkowski space M 4 here is defined 
as M4=(I~  4, - + + + ) ,  and hence the Dirac algebra @ as ~=%~(M4) = 
~(R 4, - + + + ) .  However,  ~(~4, + _ _ _ )  ~ ~(~4, _ + + + )  ~ M2(Ha). 

3.1. In 2.2, take V = ( R  3, + + + ) .  Thus, V=R0-1+R0-2+It~0-3, where 
0-1, ~ and 0- 3 are mutually orthogonal unit vectors. By 2.2(ii), 0-~ = 1 and 
0-i% =-%0-~,  i # j .  Thus, ~(~3, + + + ) =  ~. Set 0"0 = 1 ~ ~. Write ~ = R0"o = 
~1 c ~. Since the square of  the central e lement  0"10"20"3 is (0"10"20"3) 2 : - - 1 ,  

define "v/-2-1 ' '  to mean ,f-2-~_: 0"10-20"3 ~ ~. Here " C "  denotes the particular 
copy of the complexes C-= ~0"o+~,/-L-lc center ~. 

3.2. Define I = - ~ - - 1  0"~, J = - ~ - - i  0"2, and K = _, / -2]  o-3. Then 12= 
j 2  = K 3 : - 1 ,  K = IJ, and IJ  = - J I .  Thus, ~ contains the division ring of 
real quaternions H~ = R0"o+ I~I + ~ J  + ~ K  ~ ~. Furthermore, Ha is precisely 
the even Clifford subalgebra ~ + =  H a c  ~. 
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The qua te rn ion  a lgebra  over  C is ac tua l ly  all of  ~ ,  i.e., Nc -= 
C + C I + C J + C K  = ~.  Hence  also ~ = HR+x/-Z-f HR, where  ~ HR are  the 
e lements  o f  o d d  grade.  

The involu t ions  mul t ip ly  the 8 = dimR3 ~ N-vec tor  space basis  e lements  
of  ~ by  • accord ing  to Table  I. The involu t ions  * and  " act d is jo in t ly  on 
Hc = C + C I  + C J + C K .  Thus,  * is o rd ina ry  complex  con juga t ion  x/L-f * =  
- ~ - - - f  on C, while  leaving fixed I*  = I = o'3~r2, J* = J = ~r~o'3, and  K *  = K = 
o'2o'~ ; whereas  " a c t s  as mul t ip l i ca t ion  by  - 1  on I = - I ,  J = - J , / s  = - K ,  
and  leaves C a lone,  ~ - - [ ' =  v/-z-f. 

3.3. Notation. View ~ as ~ = Hc ; for  a, b, Ai,  B~ ~ C let ~i, Ai < C be 
thei r  o rd ina ry  complex  conjugates .  Each  a , /3  c ~ is un ique ly  

c~ = a + A~I + A2J + A3K =- (a, A1, A2, A3)= a + A 

where  a = ao-o = a .  1 --- (a, 0, 0, 0), and  A = (0, A~, A2, A3). Similar ly ,  /3 = 
b+B.  Thus,  a * = a + A * , A * = ( O ,  A1 ,A2 ,A3) ;  however  8 = a - A .  Then 
(a/3)* = a*/3*, bu t  ( ~ / 3 ) ' = / 3 &  Hence  ~ C 4 .  

Define ( A , B ) = A I B , + A 2 B 2 + A 3 B 3 ,  and  A x B  to be the  o rd ina ry  
c ross -p roduc t  of  comp lex  vectors  A, B 6 {0} x C 3 = C 3. Clear ly ,  A x B = 
�89 - BA). Thus,  

A B  = �89 + BA) + �89 - BA) = (A, B) + A x B 

by 2.2(ii). Thus ~/3 = ab + aB+ b A + A B  or 

a / 3 = a b - ( A , B ) + a B + b A + A x B ,  A x B = � 8 9  

N o w  extend  ( . , , )  to all o f  ~ = C 4 by  defining ( a , / 3 )  = ab + (A, B). 

3.4. Embedding. Define Minkowsk i  space M 4 to be M 4= 
~ Z - - f N + N I + R J + R K  c ~, where  N4~ M 4 by  

(t, x, y, z ) ~ - - - f  t+ x I  + yJ  + zK ~ M 4 

It is the  involu t ions  that  define the phys ica l ly  impor t an t  subspaces .  
Thus: 

M 4= {r e = r * ' = - r }  (1) 

T a b l e  I 

Grade ~ * P 

0 1 = 0-0 + + + 
l 0-~ 0-2 0"3 - + - 

2 0"30"2 0"I 0"3 0"20-1 + - -  - -  

3 0-10"2 0-3 = x / ~  - - + 
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consists of  all elements of  ~ that are skew symmetric with respect to the 
involution "*. Euclidean space E 3 is the subspace of M 4 that is left pointwise 
fixed by *, 

E 3 = R I + ~ J + ~ K  = {re  ~ ]  r* = r, F* = F= - r }  (2) 

The right hand sides of  (1), (2), and (3) below are Well defined in any 
Clifford algebra whatever. 

3.5. Scalar Products. For a,/3 ~ ~ = C 4 as in 3.3 the symmetric inner 
product  ( - ,  -) on C a reduces to the Lorentz inner product on M4: 

1. Inner or dot: 

(a , /3)  ~ ab + (A, B) = �89 c C 

2. Lorentz: 

y = ~ - Z l a + A ,  6 = ~ Z - f b + B ~ M  4 

(% 6)=-(~ZT a+ A,~-L-l b+ B) =- - a b + ( A ,  B)=�89 6~) 

3. Hilbert space ca: 

(a, fl)== ab+(A*, B) = abq-AIBI + A2B2+,Zi3B3 = �89 q- ~ol*) 

The associated metrics are: 
(1) (ce, a )=a2+(A ,A)=ce~=~ce  

which is positive definite only on R .  1 + ~ I + ~ J + ~ K .  
(2) (3, 3/) = - a 2 + (  A, A) : ~3 / :  77 on M 4 
(3) (o~, a ) =  [aI2+IAIIZ+IA212+IA3] 2--�89 + ~a*)  

3.6. Minkowski space M 4C ~ v i a  

( t ,  X, y ,  Z)  --> tO'lO'2Or 3 - -  xor20" 3 q- yo '1  O" 3 - -  ZO'I O" 2 

- - ins ide  ~0 is not merely a convenient ad hoc empirical formula, but has 
an algebraic (-=intrinsic and natural) justification: 

(a) Since IJ = K, JK = I, and KI = J multiply just like the usual unit 
vectors in ~3, Euclidean space " E  3'' clearly should be E 3= 
RI +RJ + ~ K  c ~. 

(b) Why should time run along x/-z1 ~ rather than ~ �9 1 ? Because, for 
a = a + A , / 3 = b + B ~ R .  I + ~ I + ~ J + ~ K ,  the expression - a b + ( A , B )  
cannot be written as sums or differences of products of  
a, ~, a*,  ~*, a P,/3, t i P , . . - ,  etc. 

4. C O N S T R U C T I O N  OF SO(3,1:  R ) ~ S O ( 4 ; C )  FROM 

4.1, Any ce ~ Hc = ~ has an inverse a-~ c ~ if[ c~a = ao7 ~ 0, in which 
case a -1=  ~ / ( ~ a ) .  Thus, 

S3={pcHR[~p= 1}c G = { q c H c l f f q =  1} 
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are multiplicative subgroups inside ~. Left and right multiplications by any 
p, q e G define invertible C-linear transformations Lp, Rq, LpR o : C 4 ~ C 4 by 
Lpr=pr, Rot = rq, and LpRqr=pqr for r e  C4= ~. Their determinants are  
det Lp = (/~p)2=+l and det Rq = (c~q)2=+l. This and other facts can be 
verified by taking a 4 x 4 complex matrix representation of the Lp, Rq, and 
LpR o (Dauns, 1982). 

The group of all C-linear transformations of C 4---> C 4 that preserves the 
inner product 3.5(1) and have determinant +1 is SO(4; C). Since c~q = 1, p/~ = 
1, and since rye C is a scalar, LpRq e SO(4; C), because 

( LpRqr, LpRqr) = (prq, prq) = (prq)(prq)" = prq~Y~ = ( r, r) 

Note that det (LpRq) = (~6p)2(~lq) 2 = 1. Use of the previously mentioned 4 x 4 
complex matrix representation shows that the exponentials of the usual 12 
real Lie algebra basis elements of SO(4; C) are all of  the above required 
form. Thus 

SO(4; C) = {LpRq I(P, q) e G x G} 

r = x / Z - f t + R e M  4, R = x I + y J + z K e E  3 with t ,x ,y,  z e R .  4.2. Let 
Then 

(r, r) = r~= ~r = - t X + x 2 + y 2 +  z 2 

The proper Lorentz group S0(3 ,  1; R) is defined as all R-linear transforma- 
tions T: M 4 ~  M 4 o fde t  T =  +1 such that (i) (Tr, Tr) = (r, r) for all r e  M 4. 
In our representation all group elements will act on all of ~ as C-linear 
transformations, and hence (ii) TM 4= M 4, which by 3.4(1) is equivalent 
to ( Tr)'* = - Tr for all r e M 4. 

For q e G, (i) LqRo, automatically preserves the Lorentz metric because 
LqR#*e SO(4; C). For r e  M 4, since F* = - r  and c~*'= q*, we also have that 
(ii) LqRo,M 4= M 4, because (qr~*)'* = (q*~)*  =-qrgt*.  Thus, LqRoe 
S0(3 ,  1; ~) c SO(4; C), and shortly we will see explicitly that every proper 
Lorentz transformation is of this form. 

4.3. In this representation SO(3; R) c S0(3 ,  1; R) is to consist of all 
C-linear maps T:C4"->C 4 of determinant +1 such that first (i) T acts as 
the identity in the first component, i.e., for a + A e C + C  3, T ( a + A ) =  
a+ TA; (ii) second, T (E  3) = E3; and (iii) finally for any R e E 3 c  M 4, 
(TR, T R ) = ( R , R ) .  

For p e S 3 c H R , f i * = ~ ,  and hence LpR~eSO(3,  1;R). Let w e C  and 
R e  E 3 c  M 4. Then p ( w + R ) f i =  w+pRfi,  and by 3.4(2), pR/~e{0}xN 3. So 
far LpR~E 3 = E3; however, since LpR~ is C-linear, also (i) LpRr [{0} x C 3j -- 
{0} x C 3 holds. Trivially, 

(pRfi, pR!~) = (pR~)(pRfi)" = R_~ = ( R, R) 

Thus, LpRoe S0(3 ,  R) and SO(3; ~) = {LpRr e $3}; cf. 2.4(2). 
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4.4. For a unit vector N ~ i R I + N J + R K c M  4, set p = c o s � 8 9  
sin �89 ~ ~. Then LpRe ~ SO(3; R) is the 0-degree counterclockwise rotation 
about the axis N. 

The pure velocity v boost in the (positive) N direction is LqR4. E 
S0(3, 1; R), where 

q = cosh 10 + x/Z] - sinh 20N c 

with 
I 

c o s h  0 = 1/[1 ' - - (V/C)2]  1/2, sinh 0 = (v/c)/[1 --('t)/C)2] 1/2 

Here either c = 1 or r = (x/-2-f ct, x, y, z), where LqRo.r = qr4*. 

4.5. The surjective group homomorphism G-~ S0(3, 1; R), q-+ LqRo. 
has kernel {1,-1},  and G/{1 , -1}~SO(3 ,  1; R). 

For any a, fl e ~, we have L~L~ = L~ ,  but R,Re = Rr Let G ~ = 
(G ~ *) be the same group G but with opposite multiplication a * fl -= fla. 
The map GxG~ (q,h)-+LqRh is a surjective group 
homomorphism with kernel {(1, 1), ( -1 ,  -1)}. Thus, ( G x  G~ 
{(1, 1), ( -1 ,  -1)} = SO(4; C). 

4.6. Identify the special linear group SL(4; C) with all C-linear trans- 
formations of ~-+ ~ of determinant one. It contains the multiplicative 
subgroup Autc ~ of algebra isomorphisms of ~ leaving its center C element- 
wise fixed; Autc ~ consists precisely of the inner automorphisms. For p ~ S 3, 
p-~ =/~ and LpRo is an inner automorphism of ~. Figure 1 is a commutative 
diagram of group homomorphisms. 

4. 7. The unitary group U(4; C) consists of all invertible C-linear trans- 
formations of ~-+ ~ that leave the Hilbert space inner product 3.5(3) 
invariant. Define U = {p e He Ifi*P = 1}. For any p, q ~ U, the identities 
q ~ = qP 4q = 1, and ~ q c U hold. Also, the determinant of LpRq is 

det Lp det eq = (~p)2(4q)2 c C 

where, by 3.5(3), the absolute values of qq and/~p are t~p]2=(l~p,~p)= 1. 
The C-linear transformation LpRq leaves the quadratic form {(g*a + 8a*)  
in 3.5(3) invariant. Thus, 

U x U ~  (p,q)~LpRq 

is a group homomorphism with kernel {(1, 1), ( - 1 , - 1 ) } .  We have UN G = 
S 3, s a c  U is a proper containment, and SO(3; N ) c  U(4; C). 
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P 

{ I , - I }  

[ 
S 3 

{1,-~} {0 ,1) , ( -1 , -1)}  

q--> (q,q) 

>> G x G ~ C G > 
q 

2:1 l l 2:1 2:1 

LqR~* " 

v 

C2 so(3,1;~) 
v 

so(3;m) ~ so(4;c) 

n N N 

Auts (~ SL(4;s SL(4;s 

(q,h) 

I 
i 

L qR h 

Fig.  1 

4.8. Unsolved Problem. Is U(4; C) ={LpRql(p, q) E U x  U~ The 
conjecture is that it is not. Now view ~ c  9. Is there a multiplicative 
subgroup U c  ~ with U c  0 such that U x  U ~  
U(4; C)? 

5. APPLICATIONS 

Recently, Clifford algebras of  dimension 32 or bigger have become 
useful in physics (Basri and Barut, 1983; Casalbuoni and Gato,  1980; 
Hestenes, 1984). For this reason a family of  Clifford algebras cg(1; n - 1) -= 
c g ( R " ; - + + . . . + )  for n = 4 , 5 , 6 , . . . o f  generalized Minkowski spaces is 
constructed which includes the Dirac algebra @ = g(1;  3) as the special 
case n =4.  It is then shown that the simple computational  scheme of 
Figure 1 is available in each cg(1; n - 1). For n = 5, the algebra g(1,  4) could 
be potentially useful in Kaluza-Klein and other five-component theories. 

5.1. For n - 4  consider on ~" the diagonal Minkowski metric 
7: - + + "  " "+ (with one " - 1 "  and n -  1 " + l " ' s ) .  Form the real Clifford 
algebra c~(1; n - 1) =- ~(  V, ~), with V = Ryo+~7~ +. �9 .+~y,_~,  where 3'o = 
- - 1 ,  2 2 2 2 Y l = Y  . . . . .  y , _x=  1, and y,~yt~=-%~%,ce~fl, for O < - a , f < - n - 1 .  
Set 6 = Yo%Y2 " �9 " % 1. Then 32 = - ( - 1 )  "~"-~)/2. Only in case �89 - 1) is 



Metrics are Clifford Algebra Involutions 191 

J 
even, define ~ - 1 = 6 ~  ~(1 ;  n - l )  and define " C "  to !be the copy C =  
E+R~-L-Tc  cr n -  1). Then the fol lowing hold: 

n even center  ~(1 ;  n - 1) = R  
n odd;  � 8 9  even center  cr n -  1) = R + R v / - 2 - ] = C  
n odd;  � 8 9  odd  center  cr n - 1 ) - - - - ~ ) E  

5.2. The fol lowing e lements  of  cr n - 1) have the same mul t ip l ica t ion 

table as ~ :  o-l = 7o3'1, o-2 = 3'03'2, o'3 = 3/03"3, and ,/-2--f = o-lo'2o- 3 = 7o3"1 Y23"3. 
Set C = ~ + [~x/-Z] - = R + N 3'0 Yl 3'~ 3'3. Then  

= C  +C3"oT1+C3"oy2+C 3"o3"3 C ~(1;  n - 1 )  

is the embedding .  The main  mul t ip l icat ion-revers ing involut ion c on 
cr n - 1) coincides with our  previous ~ on ~ ;  e.g., o-c = (3'03'g)c = %Y0 = 
-o-g, and x/-2-1 c = 3 '33 '23 '13 'o  = ~ - 1 .  

The inner  a u t o m o r p h i s m  ~ -~ a h = h - l ~ h  of  cr n - 1) by the e lement  
h = 3'1 yz 3'3 is t ime reversal,  on ~ only, because  h - l y o h  = - T o ,  while h-lygh = 
% for 1-< i-< 3. Fur thermore ,  on ~ it coincides with the previous  *; e.g., 
o'/h = - o ' i ,  and  

~/~']-h = ( 3'0 3'13'2 3'3) h h h h h =  = 3'0 3'1 3'2 3'3 - - ~ - ' T  

5.3. Although poss ib ly  C = N + R ~ - - ] - r  cr n - l ) ,  certainly 
cr n - 1 ) is both  a left and  a right C-vec to r  space.  Thus,  all o f  our  previous  
groups  SO(3;  R ) c  S 0 ( 3 ,  1; ~ ) c  SO(4;  C) now act on all o f  cr n -  1) as 
C-l inear  vector  space i somorphisms ,  since $ 3 c  G c  ~ c  cr n - l ) .  
Moreover ,  $ 3 c ~  acts by  inner  au tomorph i sms  of  ~ ( 1 ; n - 1 ) .  Thus,  
SO(3;  N) ~ $3/{1, -1}  act as a lgebra i somorph i sms  of  %'(1; n - l ) ,  while 
S 0 ( 3 ,  1; N) and SO(4;  C) even on N do not  preserve mult ipl icat ion.  Also, 
U c  ~ c  ~(1;  n - l ) .  

5.4. TheAlgebra  cr 4). By 5.1, center  ~(1 ;  4) = C. Actually,  C(1; 4) -~ 
M 4 ( C  ). Since dima ~(1;  4 ) = 2  5, also dime ~(1;  4 ) =  16---dimR 9 .  

Thus,  there is poss ib ly  no significant increase in computa t iona l  com- 
plexity in going f rom 4- to 5-dimensional  Minkowski  space,  because  bo th  
Clifford algebras are 16-dimensional  over  their  respective centers; yet 
c~(1; 4) has the extra fifth dimension.  
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